Improved Boussinesq-type equations for highly variable depth

نویسنده

  • JUAN CARLOS MUÑOZ GRAJALES
چکیده

Intermediate-depth, Boussinesq-type modelling is used to generalize previously known results for surface water waves propagating over arbitrarily shaped topographies. The improved reduced wave model is obtained after studying how small changes in the linear dispersion relation (over a flat bottom) can become dramatically important in the presence of a highly fluctuating topography. Numerical validation of the dispersive properties, regarding several possible truncations for the reduced models, are compared with the complete (non-truncated) linear potential theory model. Moreover, linear L2-estimates are extended from the analysis of KdV-type models to include the improved Boussinesq systems in contrast with potential theory. Discrepancies observed among the different possible reduced models become even more important in the wave-form inversion problem. The time reversal technique is used for recompressing a long fluctuating signal, representing a highly scattered wave that has propagated for very long distances. When properly back-propagated (through a numerical model), the scattered signal refocuses into a smooth profile representing the onset of the ocean’s surface disturbance. Previous Boussinesq models underestimate the original disturbance’s amplitude. The improved Boussinesq system agrees very well with the full potential theory predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear evolution of surface gravity waves over highly variable depth.

New nonlinear evolution equations are derived that generalize those presented in a Letter by Matsuno [Phys. Rev. Lett. 69, 609 (1992)]] and a terrain-following Boussinesq system recently deduced by Nachbin [SIAM J Appl. Math. 63, 905 (2003)]]. The regime considers finite-amplitude surface gravity waves on a two-dimensional incompressible and inviscid fluid of, highly variable, finite depth. A F...

متن کامل

A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves

Fully nonlinear extensions of Boussinesq equations are derived to simulate surface wave propagation in coastal regions. By using the velocity at a certain depth as a dependent variable (Nwogu 1993), the resulting equations have significantly improved linear dispersion properties in intermediate water depths when compared to standard Boussinesq approximations. Since no assumption of small nonlin...

متن کامل

A fully nonlinear Boussinesq model for surface waves

A Boussinesq-type model is derived which is accurate to O(kh) 4 and which retains the full representation of the fluid kinematics in nonlinear surface boundary condition terms, by not assuming weak nonlinearity. The model is derived for a horizontal bottom , and is based explicitly on a fourth-order polynomial representation of the vertical dependence of the velocity potential. In order to achi...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

Optimized Dispersion Characteristics of the Boussinesq Wave Equations

In this paper a new set of Boussinesq wave equations with improved linear dispersion properties is proposed for extending its application to deeper water without having its mathematical form changed. The improvements are due to the combination of a generalized set of Boussinesq wave equations expressed in terms of any velocity, with additional dispersive terms obtained by invoking the linear sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005